

Document prepared for Project documentation 27.01.2025, Coburg

Project supported by:

7 vol% FAME 26 vol% HVO 67 vol% fossil 10 vol% FAME 41 vol% HVO 49 vol% fossil

DIN EN 590 $\phi_{min,R33} = 820 \text{ kg/m}^3$

DIN EN 16734 $\phi_{min,R51} = 815 \text{ kg/m}^3$

FAME: fatty acid methyl ester HVO: hydrotreated vegetable oil

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- $\circ~$ Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Executive summary (1/8) - Overview

This project is focused on the investigation of properties and engine-oil dilution of drop-in capable partially regenerative diesel blends including varying shares of fatty acid methyl esters (FAME or biodiesel) and paraffinic diesel (here: hydrotreated vegetable oil - HVO).

Therefore, the project tested a variety of different fuel blends listed below.

Executive summary (2/8) – Fuel analysis and aging

The results of the chemical fuel investigations show:

- A blend of 10 vol% FAME and 41 vol% HVO (called R51) still provides a density $\rho = 815$ kg/m³ and therefore fulfills the DIN EN 16734. The R51 is therefore the fuel blend with the highest regenerative share in the context of this project.
- All tested fuel blends achieve induction times of more than 40 hours in thermo-oxidative aging, which is significantly longer than required by the standard.
- Furthermore, the aged B10 and R51 are fairly identical regarding the formation of CO absorption bands within the FTIR spectrum, which shows that the HVO share does not have a visible effect influence regarding the storage stability.
- However, the aging experiments also show that a diesel R33 shows a lower deposit formation tendency after 80 hours thermo-oxidative aging compared to a B10 and R51. Therefore, the results can find a different fuel aging behaviour after extended thermo-oxidative aging.

Executive summary (3/8) – Fuel and engine-oil analysis

The investigations of the fuel and engine-oil aging interactions are also done at thermo-oxidative conditions. Here, the fuel-oil samples are applied with a fixed mixing ratio of 20 vol% fuel to 80 vol% engine oil. Moreover, the tests include a variation of the 0W20 engine oil coming from Shell and Castrol.

The results of the fuel and engine-oil aging experiments show:

- All fuel-oil blends show an increase in density and kinematic viscosity over the duration of thermooxidative aging. In contrast, the oils, which are aged without being blended with a fuel are fairly stable regarding density and kinematic viscosity, which indicates an aging interaction within the fuel-oil blends.
- The comparison between the different fuels shows no major differences between the aging behavior. This
 means that the amount of oil aging can be assumed to be similar as long as the amount of oil dilution is
 at a comparable level.
- Moreover, the GPC results show a decrease of smaller molecules and an increase of larger molecules over the duration of aging. However, it needs to be noted that aging apparatus is constantly scavenged with air. As a result, it is possible that volatile components are leaving the sample over time.
- The results of the GCMS allow for a differentiation between the the Shell and Castrol base oil.

Executive summary (4/8) – Chassis dynamometer tests

The investigations of the emission behavior and the oil dilution behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

- Vehicle A is a non-instrumented 2.0I TDI Passat (FWD) provided by the AGQM
- Vehicle B is an instrumented 2.0I TDI Passat (FWD) provided by Volkswagen
- Vehicle C is a non-instrumented 2.0I TDI Passat (AWD) operated by Volkswagen.
- Vehicle A is tested in WLTC emission test cycles with 2 fuels and in short-distance driving with 2 fuels
- Vehicle B is tested in WLTC emission test cycles with 5 fuels and in an artifical oil-dilution test using an adapted ECU while operating the vehicle in WLTC with 2 fuels.
- Vehicle C is tested in a long-distance driving profile with 2 fuels.

Executive summary (5/8) – Emissions

The investigations of the emission behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

The results of the WLTC emission tests show:

- The emission results of vehicle A and vehicle B are very comparable using B10 and R33 with no issues regarding Euro 6 emissions and no issues regarding CH₂O, NH₃ or N₂O. The only noticable difference between vehicle A and B is that vehicle A achieves good PN emission results and vehicle B achieves very good PN emission results.
- The emission results of vehicle B with B10, R33, B0, R51 and B30 show that none of the tested fuels shows issues regarding emissions or operational stability. Vehicle C is tested in a long-distance driving profile with 2 fuels. Therefore, none of the tested fuels is assumed to be critical regarding Euro 6 emissions. Moreover, none of the tested fuels shows significant emission concentrations regarding CH₂O, NH₃ or N₂O. It is therefore assumed that the tested fuels are also capable for upcoming Euro 7 legislations.

Executive summary (6/8) – Engine oil dilution

The investigations of the oil dilution behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

The results of oil dilution tests show similar levels of oil dilution with slightly indifferent tendencies:

- The oil dilution tests with vehicle A are done in a short-distance driving profile by a nursery service. These results show that B7 provides a higher total oil dilution than B10 with vehicle A in a short-distance profile.
- The oil dilution tests with vehicle B are done at the chassis dynamometer with adapted ECU. These results show R33 provides a slightly higher total oil dilution than B10 in these testing conditions.
- The oil dilution tests with vehicle C are done on a long-distance driving profile for 15.000 km each. These results show that B10 provides a slightly higher total oil dilution than B7 in these conditions.
- The differences between these results can be attributed to two points. Firstly, all three tests are very different regarding the achievable maximum oil temperature, which can affect the re-evaporation.
 Secondly, it is possible that the applied test fuels are different regarding the base fuel properties.
- However, none of the tests shows major differences between the test fuels. And this result is important, since similar amounts of oil dilution show similar oil aging effects in the chemical experiments.

Executive summary (7/8) – Thermodynamic engine tests

Finally, the report also includes the results of thermodynamic parameter variations at the heavy-duty engine applied at Coburg University. Here, the tests include EGR variations with fixed MFB50 and single injection operation with R33, R51, HVO and B100.

The results of thermodynamic engine tests show:

- The raw-emission results of R51 are in-between the raw emission results of R33 and HVO. This verification is important to confirm that the R51 fuel blend provides no unusual emission tendencies.
- In detail, all fuels show increasing PN and CO emissions while decreasing the NOx emission via EGR.
- However, increasing EGR also shows beneficial results regarding decreased NH₃ and N₂O emissions as a result of decreased nitrogen reactions following decreased peak flame temperatures.
- Moreover, increased EGR also shows benefits regarding decreased combustion sound levels.

Executive summary (8/8)

The results of this research project show that partially regenerative fuel blends such as the R51 provide major potentials for the defossilization of the existing fleet.

- All tested fuels provide induction times of more than 40 hours.
- \circ All tested fuels show no issues in emission regarding Euro 6, CH₂O, NH₃ or N₂O.
- All tests show that the oil dilution tendencies of B7 and B10 fuel blends are on a similar level.
- And the chemical results show that the oil-fuel aging interactions are on a similar level as long as the oil dilution tendency is on a similar level as well.
- As a result, B10 and R51 are very promising fuel blends that contain an increased proportion of regenerative fuels.

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- $\circ~\text{CO}_2$ potentials within the german vehicle fleet

Summary and conclusion

Contact information

Project motivation

Explanation:

Germany has a decreasing number in diesel-car registrations

Technical potential:

The spare biodiesel share could be used for improved decarbonization of diesel engine vehicles by applying a B10, B30 or R50⁺

Technical question:

Which effects could appear with increased biodiesel shares on vehicle emissions, engine oil aging and short distance driving?

Imagesource: https://de.statista.com/statistik/daten/studie/184465/umfrage/zugelassene-diesel-pkw-in-deutschland/ Date:18.03.2024

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Fuel research at Coburg University

The project data includes 4 technical parts

- a) Fuel and oil samples are chemically analyzed
- b) Fuels are tested on thermodynamic test-bench
- c) Emission test-cycles are done in Coburg
- d) Real-life testing is done by VW and AGQM

Methods and Materials – Test car: Vehicle A

Methods and Materials – Test car: Vehicle B

Methods and Materials – Test car: Vehicle C

Methods and Materials – Test conditions

3

Illustration

Description

- The tests of task C and Task D are done at the vehicle chassis dynamometer at Coburg University using the WLTC driving profile.
- The emission tests (Task C) are started with a cold powertrain at $T_{air} = 21.5$ °C with one test per day.
- The oil dilution tests (Task D) are started with cold powertrain at at $T_{air} = 21.5$ °C but with four tests per day with dwell times of 10 minutes each.

B

Framework conditions

1

Framework conditions

	Chemical laboratory	Vehicle dynamometer	Short-distance driving (nursing)	Conventional distance driving
	B0 R33 B10 R51 B30			
Car A		R33 B10	B10 B7 g.s.	
Car B		B0 R33 B10 R51 B30		
Car B*		R33 B10		
CarC				R33 B10

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

Task A: Chemical analysis of fuels and oils

- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

Task A: Chemical analysis of fuels and oils

• Mixture determinations

- o Aging experiments
- o FTIR analysis
- \circ GPC analysis
- $\circ~$ GCMS analysis
- Task B: Reception of test vehicles
- Task C: WLTC emission testing

Task A2: Determine R50+ in density

Description

- The R50 consists of 10 vol% FAME 40 vol% HVO 50 vol% Diesel fuel
- The R50 provides a density of 815.7 kg/m³ at T = 15 °C
- In EN 16734 the lower limit for density for a B10 is 815,0 kg/m³ at T = 15°C.

27.01.2025

FAME: fatty acid methyl ester HVO: hydrotreated vegetable oil

Chemical iaboratory Vehicle dynamometer Short-distance driving (nursing) Conventional distance driving 80 R33 B10 R51 B30 F0 F0 F0 Image: State State

Task A2: Determine R50+ in density

Description

- Composition of a R50⁺ diesel fuel blend with 10 vol% FAME and a maximized regenerative content of HVO
- Maintaining the density of 815 kg/m³ given in EN 16734
- → R52 would be borderline regarding density limits

 \rightarrow R51 will be used

Task A2: Determine R50+ in viscosity

- The R50 consists of 10 vol% FAME 40 vol% HVO 50 vol% Diesel fuel
- The R51 consists of 10 vol% FAME 41 vol% HVO 49 vol% Diesel fuel
- The R52 consists of 10 vol% FAME 42 vol% HVO 48 vol% Diesel fuel

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

Task A: Chemical analysis of fuels and oils

• Mixture determinations

- Aging experiments
- o FTIR analysis
- \circ GPC analysis
- \circ GCMS analysis
- Task B: Reception of test vehicles
- Task C: WLTC emission testing

Task A3: Aging of fuels regarding phase separation

Illustration

- Aged fuels in task A3: R40, R45, R50, R51 and R61 (with constant Biodiesel content of 10 vol%)
- Parallel setup in two separate oil baths and two separate heating plates
 - Samples 1 5 (R40 R61) are in the left oil bath
 - Samples 6 10 (R40 R61) are in the right oil bath
- Aging at 110 °C with 300 ml/min air supply (non dried) for 80 hours.

Task A3: Aging of fuels regarding phase separation

Illustration

- Each gas washing bottle has its own pump, which ensures a constant flow of air.
- A thermometer in each oil bath ensures a temperature check.
- Intervals of 10 hours each day with overnight resting periods for formation of sediments.
- Sampling of each aging level (20 h, 40 h, 60 h and 80 h) with a volume of 5 ml for analysis.

Task A3: Visual inspection of the samples

- After 40 h of aging, sample 8 and 9 show a pale decoloring and all samples show no deposit formation
- After 60 h of aging, sample 2, 8 and 9 show a dark color and almost all fuels show a slight precipitation.
- After 80 h of aging, sample 5 shows the least decoloring and the least deposit formation.

Task A3: Viscosity of the samples

- Decreased viscosity increase in the period between 20 to 40 h of aging
- Early increase in viscosity of some samples after exceeding 40 h of aging
- Increasing viscosity for all samples after exceeding 60 h of aging
- One of the R61 samples with the lowest increase in viscosity after 80 h aging

Task A3: Density of the samples

- Early increase in density of some samples after exceeding 40 h of aging
- Increasing density for all samples after exceeding 60 h of aging
- One R61 sample still below the density limit of EN 16734 after 60 h of aging

Task A4: View of the real apparatus for fuel oil aging

Illustration

- The tests on task A4 are planned to be done with 20 vol% fuel and 80 vol% common light engine oil.
- Aged fuels in task A4: R33, B10, R51 and B30
- Engine oils in task A4:
 - Shell oil 0-W-20
 - o Castrol oil 0-W-20
- Aging at 170 °C with 300 ml/min air supply (non dried) for 80 hours.

Task A4: Visual inspection of the samples (Shell oil)

- With no aging, the samples without fuel (15 and 20) show a slightly darker color than the samples mixed with fuel
- After 20 h of aging, all samples show a dark color and no signs of deposit formation

Task A4: Visual inspection of the samples (Shell oil)

- The samples 5 and 10, which only consist of oil show the least darkening and no signs of deposit formation after 40, 60 and 80 hours of aging
- The fuel-oil mixtures show similar color changes and no signs of deposit formation

Task A4: Viscosity of the samples (Shell oil)

- The oil itself doesn't show significant changes regarding viscosity.
- The oil-fuel mixtures show an increase in viscosity over time, which needs to be correlated with fuel-oil aging interactions.
- The difference between sample "S-Öl + R51 (left)" and "S-Öl + R51 (right)" is consistent over time.

Task A4: Density of the samples (Shell oil)

- The oil itself doesn't show significant changes regarding density.
- The oil-fuel mixtures show an increase in density over time, which needs to be correlated with fuel-oil aging interactions.

Task A4: Visual inspection of the samples (Castrol oil)

- The samples 5 and 10, which only consist of oil show the least darkening and no signs of deposit formation after 40, 60 and 80 hours of aging
- The fuel-oil mixtures show similar color changes and no signs of deposit formation

Task A4: Viscosity of the samples (Castrol oil)

- The viscosity increases with advanced aging time.
- In the first 20 hours of aging a significant increase in viscosity of the oil/fuel mixtures can be detected.
- After the first 20 hours, the increase of viscosity slows down.

Task A4: Density of the samples (Castrol oil)

- The density increases with advanced aging time.
- The pure Castrol oil (yellow lines) shows a constant density up to an aging time of 42 hours.

Task A4: Framework of sediment validation

- Task A3 includes the adapted tests
 - Fuels: R33, B10, R51
 - o Durations: 20, 40, 60, 80, 100 h
 - Temperature: 110 °C
 - Air volume flow: 10 Liters/hours

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

Task A: Chemical analysis of fuels and oils

• Mixture determinations

- o Aging experiments
- FTIR analysis
- \circ GPC analysis
- \circ GCMS analysis
- Task B: Reception of test vehicles
- Task C: WLTC emission testing

Task A4: FTIR spectrum of B10 from barrel (w/o sediments)

- The FTIR spectrum shows a carbonyl bond between 1600 cm⁻¹ and 1900 cm⁻¹.
- In the carbonyl area, the esters of fresh fuel are detected.
- Carbonyl compounds are formed during aging and are also detected in this area.

Task A4: Zoom in the carbonyl area of B10 from barrel (w/o sediments)

- The fuel B10 from barrel is stable up to an aging time of 40 hours and shows little changes in the carbonyl area.
- From an aging time of 60 hours, band broadening and the formation of shoulders can be seen, which can be attributed to the formation of aging products.

Task A4: Zoom in the carbonyl area of B10 from barrel (w/ sediments)

- After 80 and 100 hours of aging, sediments are formed.
- The sediments show a carbonyl vibration with an extinction almost four times higher than that of the liquid phase.
- The area below the carbonyl bond can be integrated for better comparability.

Task A4: Integral of carbonyl vibrations of B10 aging from barrel

- The integral shows the same values up to an aging time of 40 hours.
- After an aging period of 60 hours, the integral of the carbonyls increases.
- The area of 80 and 100 hours has continued to increase.
- The sediments from the 80 and 100 hour aging show an area that is almost fife times larger.

Task A4: FTIR spectrum of R33 from barrel

- The FTIR spectrum shows a carbonyl bond between 1600 cm⁻¹ and 1900 cm⁻¹.
- In the carbonyl area, the esters of fresh fuel are detected.
- Carbonyl compounds are formed during aging and are also detected in this area.

Task A4: Zoom in the carbonyl area of R33 from barrel

- The fuel R33 from barrel is stable up to an aging period of 60 hours and shows little changes in the carbonyl area.
- From an aging time of 80 hours, band broadening and the formation of shoulders can be seen, which can be attributed to the formation of aging products.

Task A4: Integral of carbonyl vibrations of R33 aging from barrel

- The integral shows the same values up to an aging time of 80 hours.
- After an aging period of 100 hours, the integral of the carbonyls increases.
- That the precipitates are not deposited in the R33 from the drum might be attributed to the additives.

Task A4: FTIR spectrum of self mixed R51 (w/o sediments)

- The FTIR spectrum shows a carbonyl bond between 1600 cm⁻¹ and 1900 cm⁻¹.
- In the carbonyl area, the esters of fresh fuel are detected.
- Carbonyl compounds are formed during aging and are also detected in this area.

Task A4: Zoom in the carbonyl area of self mixed R51 (w/o sediments)

- The self mixed fuel R51 is stable up to an aging period of 40 hours and shows little changes in the carbonyl area.
- From an aging time of 60 hours, band broadening and the formation of shoulders can be seen, which can be attributed to the formation of aging products.

Task A4: Zoom in the carbonyl area of self mixed R51 (w/ sediments)

- After 80 and 100 hours of aging, sediments are formed.
- The sediments show a carbonyl vibration with an extinction almost four times higher than that of the liquid phase.
- The area below the carbonyl bond can be integrated for better comparability.

Task A4: Integral of carbonyl vibrations of self mixed R51 aging

- The integral shows the same values up to an aging time of 40 hours.
- After an aging period of 60 hours, the integral of the carbonyls increases.
- The area of 80 and 100 hours has continued to increase.
- The sediments from the 80 and 100 hour aging show an area that is almost fife times larger.

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

Task A: Chemical analysis of fuels and oils

- Mixture determinations
- o Aging experiments
- FTIR analysis
- GPC analysis
- \circ GCMS analysis
- Task B: Reception of test vehicles
- Task C: WLTC emission testing

Task A4: GPC Analysis of Castrol + R33 aging

Description

- The same logic applies for the oil and fuel samples with area
 3 dominated by the oil peak
 - 1: smallest mol. decreasing
 - 2: small mol. increasing
 - 3: oil peak
 - 4 large mol. increasing
 - 5 largest mol. increasing

- bright-line: fresh sample
- o dark-line: aged sample
- o solid-line: bucket 1
- o dashed-line: bucket 2

Legend

- Area 1 allows for a clear differentiation between the test samples.
 - black: Racimat fuel only
 - orange: aperture fuel only
 - green: aperture castrol+fuel
 - blue: aperture shell+fuel

- green circles: Castrol oil

- blue circles: Shell oil (bottom of the diagram)

- Area 2 shows an overlap between the signals.
- Here, the change between increasing and decreasing steps could be an indication for the built-up and break-up of intermediates. (not verified)

- Area 3 shows again a cleaner separation between the tests.
- Firstly, the oil-only tests show the highest signal indicating the highest concentration of the middle-sized molecules with slightly higher values for the Shell oils (blue) and minor tendency for decrease (blue).

Chemical laboratory Vehicle dynamometer Short-distance driving (nursing) Conventional distance driving B0 R33 B10 R51 R30 R33 B10 B10 B3 R30 B10 R30 B10 Gerre B. Gorre B. B0 R33 B10 R51 B30 Image: Short-distance driving (nursing) Image: Sho

Task A4: GPC Analysis data summary

- Area 4 shows one outlier of Castrol R33 with 0 hours, which is also seen in the raw-data.
- Despite of the outlier, Area 4 shows an overall increase of signal intensity, which indicates an increase of large molecules with all tested samples.
- The delayed signal increase of the fuels-only samples might show a delayed start of aging.

- Area 5 also shows a clear separation of the samples.
- The fuel-oil blends show noticeable signal intensities, which indicates the appearance of molecules or polymers with > 10.000 Da with slightly higher values for the castrol samples (green).
- The fuels-only samples show no signals for such large molecules, which indicates that such molecules correlate to oil aging processes.

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Fuel research at Coburg University

Methods and Materials – Test car: Vehicle A

	B		<i>i</i>			
Vehi	cle	Illustration		Des	scription	
dynamo	ometer			o Transmission: D	Q381 (DSG/FWI	D)
			1 2000 20 7	o Emissioning: Eu	ro 6d (EA288 EV	O)
				o Engine: 2.0I TDI	SCR	
		A Company of the second	2 1	o 400 Nm @	1750 - 3500 rpm	
				○ 147 kW @ 3	3500 - 4000 rpm	
			B	o Certified consum	nption:	
	HS31 BOK		1	○ 4,7 l/100 kn	n	
			/	○ 124 g/km		
				o Model year: 202	1	

Methods and Materials – Test car: Vehicle B

	B					
Vehic	le	Illustration		Des	cription	
dynamon	neter			• Transmission: D	Q381 (DSG/FWD)	
ALL				• Emissioning: Eur	ro 6d (EA288 EVO)	
10-10		10-10-11		o Engine: 2.0I TDI	SCR	
				○ 400 Nm @ ′	1750 - 3500 rpm	
			synthel	○ 147 kW @ 3	3500 - 4000 rpm	
				o Certified consum	nption:	
			1 and a second	○ 4,7 l/100 km)	
				○ 124 g/km		
				• Model year: 201	9	

Results of vehicle emission tests

Vehicle A

R33: achieved 3 valid tests B10: achieved 3 valid tests

Vehicle B

B0: achieved 3 valid tests
R33: achieved 3 valid tests
B10: achieved 3 valid tests
R51: achieved 3 valid tests
B30: achieved 3 valid tests

- Coburg conducted the tests with vehicle A and vehicle B by using the summer tires of vehicle B (daily tire switches)
- Vehicle A finalized the tests with B10 and R33
- Vehicle B finalized the tests with B0, R33, B10, R51 and B30

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

o Task A: Chemical analysis of fuels and oils

- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- $\circ~$ Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
 - Comparison between vehicle A and B
 - $\circ~$ Comparison of fuels with vehicle B
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing

o ...

All tests fulfill the Euro 6 emission limits

Task C1: Comparison between vehicle A and B

					erview	Ov						
ance	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	СО	CO2	BENTE
(m)	(km)	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle A
	23,265	4,7441	7,08E+10	25,6	4,7	4,3	29,4	20,9	8,5	24,8	124,72	B10
,288	23,288	4,7003	6,87E+10	24,9	4,4	4,0	28,4	20,6	7,9	19,5	123,58	B10
,264	23,264	4,8321	6,45E+10	27,7	6,2	4,3	31,5	21,5	10,0	28,7	127,03	B10
,27	23,27	4,76	6,80E+10	26,08	5,09	4,22	29,77	20,99	8,78	24,33	125,11	Average
	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	CO	CO2	BENTE
	(km)	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle A
,283 Representative	23,283	4,5914	6,02E+10	24,4	3,7	2,9	26,9	20,7	6,2	19,7	120,72	R33
	23,277	4,5828	5,25E+10	23,1	3,4	3,6	26,2	19,7	6,5	16,5	120,50	R33
	23,274	4,6484	5,80E+10	28,1	5,5	3,6	31,3	22,6	8,7	27,2	122,20	R33
,28	23,28	4,61	5,69E+10	25,21	4,21	3,34	28,14	21,00	7,13	21,14	121,14	Average
	D : 1	- I C	DN			<u></u>			THE		602	DENTE
	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	CO	CO2	BENTE
	<u>(km)</u>	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle B
	23,272	4,7067	1,65E+08	22,3	6,3	4,3	26,1	16,0	10,1	25,4	123,73	B10
	23,273	4,7561	1,74E+08	24,8	8,1	4,4	28,7	16,7	11,9	34,1	125,01	B10
	23,269	4,7371	3,09E+08	25,1	7,0	3,5	28,1	18,1	10,1	25,9	124,53	B10
,2/	23,27	4,73	2,16E+08	24,07	7,14	4,08	27,64	16,93	10,72	28,49	124,43	Average
ance	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	СО	CO2	BENTE
	(km)	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle B
	23,260	4,7031	1,33E+08	22,1	<u> </u>	<u>3,3</u>	25,0	<u>16,7</u>	8,2	24,8	123,64	R33
	23,269	4,6976	1,88E+08	22,1	5,5 5,7	3,5	25,5	16,7	8,8	24,9	123,50	R33
	23,265	4,6852	1,38E+08	22,5	5,3	3,1	25,3	17,3	8,0	24,7	123,18	R33
	23,26	4,70	1,53E+08	22,32	<u> </u>	3,33	25,23	16,88	8,35	24,82	123,44	Average

Representative tests chosen by medium carbon dioxide (CO₂) values

Vehicle A and B closely comparable Only noticeable difference in PN

Task C1: Comparison between vehicle A and B

						Ov	erview					
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	
Vehicle A	(g/km)	(mg/km)	(#/km)	(l/100km)	(km)							
B10	124,72	24,8	8,5	20,9	29,4	4,3	4,7	25,6	7,08E+10	4,7441	23,265	Representative
B10	123,58	19,5	7,9	20,6	28,4	4,0	4,4	24,9	6,87E+10	4,7003	23,288	
B10	127,03	28,7	10,0	21,5	31,5	4,3	6,2	27,7	6,45E+10	4,8321	23,264	
Average	125,11	24,33	8,78	20,99	29,77	4,22	5,09	26,08	6,80E+10	4,76	23,27	
												_
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	
Vehicle A	(g/km)	(mg/km)	(#/km)	(l/100km)	(km)							
R33	120,72	19,7	6,2	20,7	26,9	2,9	3,7	24,4	6,02E+10	4,5914	23,283	Representative
R33	120,50	16,5	6,5	19,7	26,2	3,6	3,4	23,1	5,25E+10	4,5828	23,277	
R33	122,20	27,2	8,7	22,6	31,3	3,6	5,5	28,1	5,80E+10	4,6484	23,274	
Average	121,14	21,14	7,13	21,00	28,14	3,34	4,21	25,21	5,69E+10	4,61	23,28	
												_
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	
Vehicle B	(g/km)	(mg/km)	(#/km)	(l/100km)	(km)							
B10	123,73	25,4	10,1	16,0	26,1	4,3	6,3	22,3	1,65E+08	4,7067	23,272	
B10	125,01	34,1	11,9	16,7	28,7	4,4	8,1	24,8	1,74E+08	4,7561	23,273	
B10	124,53	25,9	10,1	18,1	28,1	3,5	7,0	25,1	3,09E+08	4,7371	23,269	Representative
Average	124,43	28,49	10,72	16,93	27,64	4,08	7,14	24,07	2,16E+08	4,73	23,27	
												-
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	
Vehicle B	(g/km)	(mg/km)	(#/km)	(l/100km)	(km)							
R33	123,64	24,8	8,2	16,7	25,0	3,3	5,3	22,1	1,33E+08	4,7031	23,260	
R33	123,50	24,9	8,8	16,7	25,5	3,5	5,7	22,4	1,88E+08	4,6976	23,269	Representative
R33	123,18	24,7	8,0	17,3	25,3	3,1	5,3	22,5	1,38E+08	4,6852	23,261	
Average	123,44	24,82	8,35	16,88	25,23	3,33	5,44	22,32	1,53E+08	4,70	23,26	

Representative tests chosen by medium carbon dioxide (CO₂) values

Representative tests are selected due to the medium CO₂ values

Task C1: Comparison between vehicle A and B

						Ov	rview					
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	Representative
Vehicle A	(g/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(#/km)	(l/100km)	(km)	
B10	124,72	24,8	8,5	20,9	29,4	4,3	4,7	25,6	7,08E+10	4,7441	23,265	
B10	123,58	19,5	7,9	20,6	28,4	4,0	4,4	24,9	6,87E+10	4,7003	23,288	
B10 B10 Average	125,58 127,03 125,11	<u>28,7</u> 24,33	10,0 8,78	20,0 21,5 20,99	31,5 29,77	4,0 4,3 4,22	6,2 5,09	<u>27,7</u> 26,08	6,45E+10 6,80E+10	4,7003 4,8321 4,76	23,268 23,264 23,27	-
BENTE Vehicle A R33 R33 R33 Average BENTE	CO2 (g/km) 120,72 120,50 122,20 121,14 CO2	CO (mg/km) 19,7 16,5 27,2 21,14 CO	THC (mg/km) 6,2 6,5 8,7 7,13 THC	NOx (mg/km) 20,7 19,7 22,6 21,00 NOx	HC+NOx (mg/km) 26,9 26,2 31,3 28,14 HC+NOx	4,22 CH4 (mg/km) 2,9 3,6 3,6 3,6 3,34 CH4	NMHC (mg/km) 3,7 3,4 5,5 4,21 NMHC	NMHC+NOx (mg/km) 24,4 23,1 28,1 25,21 NMHC+NOx	PN (#/km) 6,02E+10 5,25E+10 5,80E+10 5,69E+10 PN	Fuel Cons. (I/100km) 4,5914 4,5828 4,6484 4,61 Fuel Cons.	Distance (km) 23,283 23,277 23,274 23,28 Distance	Representative
Vehicle B	(g/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(#/km)	(l/100km)	(km)	Representative
B10	123,73	25,4	10,1	16,0	26,1	4,3	6,3	22,3	1,65E+08	4,7067	23,272	
B10	125,01	34,1	11,9	16,7	28,7	4,4	8,1	24,8	1,74E+08	4,7561	23,273	
B10	124,53	25,9	10,1	18,1	28,1	3,5	7,0	25,1	3,09E+08	4,7371	23,269	
Average	124,43	28,49	10,72	16,93	27,64	4,08	7,14	24,07	2,16E+08	4,73	23,27	
BENTE	CO2	CO	THC	NOx	HC+NOx	CH4	NMHC	NMHC+NOx	PN	Fuel Cons.	Distance	Representative
Vehicle B	(g/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(#/km)	(l/100km)	(km)	
R33	123,64	24,8	8,2	16,7	25,0	3,3	5,3	22,1	1,33E+08	4,7031	23,260	
R33	123,50	24,9	8,8	16,7	25,5	3,5	5,7	22,4	1,88E+08	4,6976	23,269	
R33	123,18	24,7	8,0	17,3	25,3	3,1	5,3	22,5	1,38E+08	4,6852	23,261	
Average	123,44	24,82	8,35	16,88	25,23	3,33	5,44	22,32	1,53E+08	4,70	23,26	

Representative tests chosen by medium carbon dioxide (CO₂) values

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
 - $\circ~$ Comparison between vehicle A and B
 - \circ Comparison of fuels with vehicle B
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing

0 ...

Methods and Materials – Test car: Vehicle B

		R.			
Vehicle	Illustration		Desc	cription	
dynamometer				o 6d (EA288 EVO)	
CO'HS 33			 Certified consum 4,7 l/100 km 124 g/km Used in task C ar 	- -	

Vehicle B fulfills the Euro 6 emission limits with all fuels

Task C2: Vehicle B – B0, B30, R51, B10, R33, data

Overview – Bag results

7	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	CO	CO2	BENTE
		(l/100km)	(#/km)									Vehicle B
_	(km)			(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	B10
	23,272	4,7067	1,65E+08	22,3	6,3	4,3	26,1	16,0	10,1	25,4	123,73	
Demonstration	23,273	4,7561	1,74E+08	24,8	8,1	4,4	28,7	16,7	11,9	34,1	125,01	B10
Representative	23,269	4,7371	3,09E+08	25,1	7,0	3,5	28,1	18,1	10,1	25,9	124,53	B10
	23,27	4,73	2,16E+08	24,07	7,14	4,08	27,64	16,93	10,72	28,49	124,43	Average
	22.200	4 7021	1 225 - 00	22.1	F 2	2.2	25.0	10.7	0.2	24.0	122.64	022
	23,260	4,7031	1,33E+08	22,1	5,3	3,3	25,0	16,7	8,2	24,8	123,64	R33
Representative	23,269	4,6976	1,88E+08	22,4	5,7	3,5	25,5	16,7	8,8	24,9	123,50	R33
_	23,261	4,6852	1,38E+08	22,5	5,3	3,1	25,3	17,3	8,0	24,7	123,18	R33
	23,26	4,70	1,53E+08	22,32	5,44	3,33	25,23	16,88	8,35	24,82	123,44	Average
_		4.6004	6.405.00	24.4			26.0	10.0			400.07	
	23,279	4,6921	6,40E+08	24,4	4,6	2,7	26,8	19,9	7,0	20,1	123,37	BO
	23,266	4,7076	3,09E+08	24,7	5,6	3,0	27,3	19,1	8,2	27,5	123,76	B0
Representative	23,263	4,6866	9,96E+07	26,0	5,1	3,2	28,8	20,9	7,9	26,6	123,21	B0
	23,27	4,70	3,49E+08	25,07	5,09	2,96	27,66	19,98	7,68	24,74	123,45	Average
											1	
Representative	23,305	4,7460	6,03E+07	24,0	5,3	2,3	26,0	18,7	7,2	20,8	122,16	R51
	23,269	4,7717	1,07E+08	23,0	5,0	2,7	25,4	18,0	7,3	23,7	122,82	R51
	23,305	4,7015	3,81E+08	19,6	3,1	2,5	21,8	16,5	5,3	15,6	121,03	R51
	23,29	4,74	1,83E+08	22,20	4,47	2,50	24,40	17,73	6,60	20,03	122,00	Average
											-	
	23,258	4,7088	9,45E+07	22,8	5,6	3,1	25,5	17,3	8,3	23,9	123,80	B30
Representative	23,270	4,7345	5,79E+07	23,1	6,2	3,0	25,7	16,9	8,8	25,0	124,47	B30
	23,279	4,7722	8,97E+07	22,3	5,0	2,8	24,7	17,3	7,4	24,3	125,47	B30
	23,27	4,74	8,07E+07	22,73	5,60	2,97	25,30	17,17	8,17	24,40	124,58	Average

Representative tests are selected due to the medium CO₂ values

Task C2: Vehicle B – B0, B30, R51, B10, R33, data

Overview – Bag results

-	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	CO	CO2	BENTE
	(km)	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle B
-	23,272	4,7067	1,65E+08	22,3	6,3	4,3	26,1	<u>16,0</u>	10,1	25,4	123,73	B10
	23,272	4,7561	1,74E+08	24,8	8,1	4,4	28,7	16,7	11,9	34,1	125,01	B10
Representativ	23,269	4,7371	3,09E+08	25,1	7,0	3,5	28,1	18,1	10,1	25,9	124,53	B10
	23,205	4,73	2,16E+08	24,07	7,14	4,08	27,64	16,93	10,72	28,49	124,43	Average
1	_0,_;	.,, C		,•;	<i>,</i> , <u> </u> .	.,		_0,00			,	, it cluge
1	23,260	4,7031	1,33E+08	22,1	5,3	3,3	25,0	16,7	8,2	24,8	123,64	R33
Representativ	23,269	4,6976	1,88E+08	22,4	5,7	3,5	25,5	16,7	8,8	24,9	123,50	R33
	23,261	4,6852	1,38E+08	22,5	5,3	3,1	25,3	17,3	8,0	24,7	123,18	R33
	23,26	4,70	1,53E+08	22,32	5,44	3,33	25,23	16,88	8,35	24,82	123,44	Average
	23,279	4,6921	6,40E+08	24,4	4,6	2,7	26,8	19,9	7,0	20,1	123,37	B0
	23,266	4,7076	3,09E+08	24,7	5,6	3,0	27,3	19,1	8,2	27,5	123,76	B0
Representativ	23,263	4,6866	9,96E+07	26,0	5,1	3,2	28,8	20,9	7,9	26,6	123,21	B0
	23,27	4,70	3,49E+08	25,07	5,09	2,96	27,66	19,98	7,68	24,74	123,45	Average
	22.205	4 7460	C 025 · 07	24.0	F 2	2.2	26.0	10.7	7.0	20.0	122.10	DE1
Representativ	23,305	4,7460	6,03E+07	24,0	5,3	2,3	26,0	18,7	7,2	20,8	122,16	R51
	23,269	4,7717	1,07E+08	23,0	5,0	2,7	25,4	18,0	7,3	23,7	122,82	R51
_	23,305	4,7015	3,81E+08	19,6	3,1	2,5	21,8	16,5	5,3	15,6	121,03	R51
-	23,29	4,74	1,83E+08	22,20	4,47	2,50	24,40	17,73	6,60	20,03	122,00	Average
-1	23,258	4,7088	9,45E+07	22,8	5,6	3,1	25,5	17,3	8,3	23,9	123,80	B30
Representative	23,250	4,7345	5,79E+07	22,8	5,0 6,2	3,0	25,5	16,9	8,8	25,9	123,80	B30
Representativ	23,270	4,7722	8,97E+07	22,3	5,0	2,8	23,7	17,3	0,0 7,4	23,0	125,47	B30
		7//44	0, 7 (L 0 /	22,5	5,0	2,0	27,1	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,7	27,5		000

Description

- B10 shows a minor drawback regarding CO2 emissions
- R51 shows a minor benefit regarding CO2 emissions
- Vehicle B B0: 123,21 g/km
- Vehicle B B30: 124,47 g/km
- Vehicle B R51: 122,16 g/km
- Vehicle B B10: 124,53 g/km
- Vehicle B R33: 123,50 g/km
 - B_B0
 B_B30
 B_R51
 B_B10
 B_R33

Representative tests chosen by CO2 CO2: carbon dioxide

Description

- B10 shows slightly higher THC emissions.
- R51 shows a minor benefit regarding THC emissions
- B30 and R33 show similar results.
- Vehicle B B0 : 7,9 mg/km
- Vehicle B B30: 8,8 mg/km
- Vehicle B R51: 7,2 mg/km
- Vehicle B B10: 10,1 mg/km
- Vehicle B R33: 8,8 mg/km

Limit: 100 mg/km

— B_R51 — B_B0 — B_B10 — B B30 — B_R33

Representative tests chosen by CO2 THC: total hydrocarbon

Description

- B10 and R33 show slightly Ο higher CH4 emissions.
- R51 shows a minor benefit 0 regarding CH4 emissions
- Vehicle B B0: 3,2 mg/kmΟ
- Vehicle B B30: 3,0 mg/km Ο
- Vehicle B R51: 2,3 mg/km Ο
- Vehicle B B10: 3,5 mg/km Ο
- Vehicle B R33: 3,5 mg/km Ο
 - B_B0 B_B30 B R51 — B_B10 — B_R33

CH4: methane

Representative tests chosen by CO2 Nox: nitrogen oxids (NO1 + NO2)

Representative tests chosen by CO2 PN: particle number

Project Report – Jakob – Fuel Research

27.01.2025

Representative tests chosen by CO2 CH4: methane

Description

- No significant differences in FTX CH4 concentrations
- No significant differences in FTX NH3 concentrations

Representative tests chosen by CO2 NH3: ammonia

Representative tests chosen by CO2 CH2O: formaldehyde

Description

- Minor N2O emissions on low concentrations with all fuels
- Minor CH2O emissions, which decrease after catalyst light-off

B_B0
B_B30
B_R51
B_B10
B_R33

Representative tests chosen by CO2 N2O: nitrous oxide

Vehicle B meets all limits with all tested fuels

Task C2: Vehicle B – B0, B30, R51, B10, R33, data

Overview –	Bag	results
------------	-----	---------

	Distance	Fuel Cons.	PN	NMHC+NOx	NMHC	CH4	HC+NOx	NOx	THC	CO	CO2	BENTE
	(km)	(l/100km)	(#/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(g/km)	Vehicle B
-	23,272	4,7067	1,65E+08	22,3	6,3	4,3	26,1	16,0	10,1	25,4	123,73	B10
	23,273	4,7561	1,74E+08	24,8	8,1	4,4	28,7	16,7	11,9	34,1	125,01	B10
Representativ	23,269	4,7371	3,09E+08	25,1	7,0	3,5	28,1	18,1	10,1	25,9	124,53	B10
	23,27	4,73	2,16E+08	24,07	7,14	4,08	27,64	16,93	10,72	28,49	124,43	Average
	- 1						1-				, , -	
7	23,260	4,7031	1,33E+08	22,1	5,3	3,3	25,0	16,7	8,2	24,8	123,64	R33
Representativ	23,269	4,6976	1,88E+08	22,4	5,7	3,5	25,5	16,7	8,8	24,9	123,50	R33
	23,261	4,6852	1,38E+08	22,5	5,3	3,1	25,3	17,3	8,0	24,7	123,18	R33
	23,26	4,70	1,53E+08	22,32	5,44	3,33	25,23	16,88	8,35	24,82	123,44	Average
	23,279	4,6921	6,40E+08	24,4	4,6	2,7	26,8	19,9	7,0	20,1	123,37	B0
	23,266	4,7076	3,09E+08	24,7	5,6	3,0	27,3	19,1	8,2	27,5	123,76	B0
Representativ	23,263	4,6866	9,96E+07	26,0	5,1	3,2	28,8	20,9	7,9	26,6	123,21	B0
	23,27	4,70	3,49E+08	25,07	5,09	2,96	27,66	19,98	7,68	24,74	123,45	Average
Representativ	23,305	4,7460	6,03E+07	24,0	5,3	2,3	26,0	18,7	7,2	20,8	122,16	R51
Representativ	23,269	4,7717	1,07E+08	23,0	5,0	2,3	25,4	18,0	7,2	20,0	122,10	R51
	23,305	4,7015	3,81E+08	19,6	3,1	2,5	21,8	16,5	5,3	15,6	121,02	R51
-	23,29	4,74	1,83E+08	22,20	<u> </u>	<u>2,5</u> 2,50	<u>21,0</u> 24,40	17,73	<u> </u>	20,03	122,00	Average
	23,23		1,052100	22,20		2,50	24,40		0,00	20,05	122,00	Average
7	23,258	4,7088	9,45E+07	22,8	5,6	3,1	25,5	17,3	8,3	23,9	123,80	B30
Representativ	23,270	4,7345	5,79E+07	23,1	6,2	3,0	25,7	16,9	8,8	25,0	124,47	B30
	23,279	4,7722	8,97E+07	22,3	5,0	2,8	24,7	17,3	7,4	24,3	125,47	B30
1	23,27	4,74	8,07E+07	22,73	5,60	2,97	25,30	17,17	8,17	24,40	124,58	Average

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Task D2: Oil dilution tests

Description

- The test-bench oil dilution tests are done at the vehicle chassis dynamometer with vehicle B equipped with an adapted ECU for continuous DPF regeneration.
- There is a difference between the first and second oil dilution tests of each fuel.
- However, the recorded data provides no indication for a changed vehicle operation

Task D2: Oil dilution tests – B10 (First run, Trigger, 1/2)

B10 - R33 - R33 - B10

Description

- The following diagrams show
 the trigger signal for DPF regeneration (OBD record)
 the temperatures with the oxidation cat (CAN record)
 the temperatures with the particle filter (CAN record)
- All signals show reproducible operation with the DPF regeneration mode
- No OBD on last day (B10/2)
- No CAN on B10/1 day 2&3
- CAN shows Reg. on last day

OBD: onboard diagnostics, CAN: controller area network, DPF: diesel particle filter, PEMS: portable emission measurement system

Task D2: Oil dilution tests – R33 (First run, Trigger, 1/2)

B10 - R33 - R33 - B10

Description

- The following diagrams show
 the trigger signal for DPF regeneration (OBD record)
 the temperatures with the oxidation cat (CAN record)
 the temperatures with the particle filter (CAN record)
- All signals show reproducible operation with the DPF regeneration mode
- No OBD on last day (B10/2)
- No CAN on B10/1 day 2&3
- CAN shows Reg. on last day

OBD: onboard diagnostics, CAN: controller area network, DPF: diesel particle filter, PEMS: portable emission measurement system

Task D2: Oil dilution tests

Illustration									
	B10	R33	R33	B10					
Testday 1	\checkmark	\checkmark	\checkmark	\checkmark					
Testday 2	\checkmark	\checkmark	\checkmark	\checkmark					
Testday 3	\checkmark	\checkmark	\checkmark	\checkmark					
Fuel-change day	\checkmark	\checkmark	\checkmark	\checkmark					
Samples taken	7	7	7	7					
Starting oil-mass	3531 g	3533 g	3532 g	3531 g					
Scavenged oil-mass	3518,59 g	3526,06 g	3452,58 g	3500,14 g					
Oil mass in Filter	188,96 g	190,39 g	190,23 g	189,76 g					
Total final oil-mass	3707,55	3716,45 g	3642,81 g	3689,9 g					
Delta oil-mass	+ 176,55 g	+ 183,45 g	+ 110,81 g	+ 158,9 g					

B10 - R33 - R33 - B10

Description

- The oil dilution results are based on tests with vehicle B equipped with an adapted ECU for continuous DPF regeneration
- There is a difference between the first and second oil dilution tests of each fuel.
- However, the recorded data provides no indication for a changed vehicle operation

27.01.2025

Description

- The viscosity data of the taken Ο samples shows a continuous decrease of viscosity over the 7 samples taken during one oil dilution run.
- This result shows the viscosity Ο effect of oil dilution outweighs the viscosity effect of oil aging, since the oil-fuel aging experiments show increasing viscosities with propagating accelerated aging in the chemical laboratory
 - R33 run1 -- R33 run2 B10 run1

Description

- The total accumulated fuel mass of the taken samples shows a continuous increase during the oil dilution runs.
- This result shows the viscosity effect of oil dilution outweighs the viscosity effect of oil aging, since the oil-fuel aging experiments show increasing viscosities with propagating accelerated aging in the chemical laboratory
 - R33 run1
 R33 run2

 B10 run1
 B10 run2

Description

- The data of diesel content shows increasing diesel contents over the duration of the oil dilution tests.
- Here, the tests with R33 show higher masses of entrained diesel, despite of the point that Diesel R33 contains 67 vol% of fossil diesel, while B10 contains 90 vol%.

R33 run1
R33 run2
B10 run1
B10 run2

Description

- The data of the FAME content is influenced by two facts.
- a) The system can only detect massfractions of > 0,3 m%. Thus, the first 3 values show the signal base-line
- b) The B10_1_FAME values seem to have outliers.
- The data still shows that the content of Biodiesel oil dilution is larger with B10.

R33 run1
R33 run1
R33 run2
B10 run1
B10 run2

In total, the test-bench oil-dilution tests show slightly lower total oil dilutions during the operation with B10

Task D2: ECU oil dilution analysis – results

Description

- The total accumulated fuel mass of the taken samples shows a continuous increase during the oil dilution runs.
- This result shows the viscosity effect of oil dilution outweighs the viscosity effect of oil aging, since the oil-fuel aging experiments show increasing viscosities with propagating accelerated aging in the chemical laboratory
 - R33 run1
 R33 run2

 B10 run1
 B10 run2

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- Task X: Thermodynamic raw-emissions
- Executive summary and outlook

Acknowledgment

Contact information

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
 - Short-distance driving by AGQM
 - $\circ~$ Long-distance driving by VW
- Task X: Thermodynamic raw-emissions

0 ...

Fuel research at Coburg University

Methods and Materials – Test car: Vehicle A

	Ś					
Vehic	cle	Illustration		Des	cription	
dynamor	meter			• Transmission: D	Q381 (DSG/FWE	D)
			The second second	o Emissioning: Eur	o 6d (EA288 EV	C)
				o Engine: 2.0I TDI	SCR	
		A hard	10-5	○ 400 Nm @ 1	750 - 3500 rpm	
				∘ 147 kW @ 3	500 - 4000 rpm	
			0	• Certified consum	ption:	
				○ 4,7 l/100 km		
				o 124 g/km		
				○ Used in task C a	nd task E	

In total, the oil-dilution with B10 in short-distance driving is slightly less present than the oil dilution with B7

Task E2: Short distance (sd) driving of vehicle A by AGQM

Description

- The short-distance driving tests are done by nursery service running vehicle A with B7 from different public fuel stations and B10 for a total distance of ~ 2000 km each.
- The total mass of diesel and biodiesel oil dilution shows the higher oil dilution tendency of vehicle A during operation with B7.

A_sd_B7
A_sd_B10

Task E2: Short distance (sd) driving of vehicle A by AGQM

Description

- The short-distance driving tests are done by nursery service running vehicle A with B7 from different public fuel stations and B10 for a total distance of ~ 2000 km each.
- The results show that the vehicle A has a stronger oil dilution caused by diesel fuel while operating with B7.
 Moreover, the vehicle didn't activate the MiL during the operation with B10.
 A_sd_B7
 A sd B10

Task E2: Short distance (sd) driving of vehicle A by AGQM

Description

- The short-distance driving tests are done by nursery service running vehicle A with B7 from different public fuel stations and B10 for a total distance of ~ 2000 km each.
- The total mass content of the oildilution caused by biodiesel is similar with B7 and B10, which could result from a balance between higher biodiesel content and lower oil dilution tendency.
 A_sd_B7
 A sd B10

Task E2: Short distance (sd) driving of vehicle A by AGQM

Description

- The short-distance driving tests are done by nursery service running vehicle A with B7 from different public fuel stations and B10 for a total distance of ~ 2000 km each.
- The overall oil dilution results in a decrease of the oil viscosity, which is on a comparable level for both tested fuels.

A_sd_B7
A_sd_ B10

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
 - $\circ~$ Short-distance driving by AGQM ~
 - Long-distance driving by VW
- Task X: Thermodynamic raw-emissions

0 ...

Fuel research at Coburg University

Methods and Materials – Test car: Vehicle C

In total, the oil-dilution with B7 in long distance driving is slightly less present than the oil dilution with B10

Task E1: Long distance (Id) driving of vehicle C by VW

Description

- The long-distance driving tests are done by VW with vehicle C using R33 from a public fuel station and B10 for 15.000 km each.
- The total amount of diesel and biodiesel oil dilution can be affected by an accumulation of biodiesel if the oil temperatures are still too low for biodiesel re-evaporation

-- A_sd_B7 -- C_ld_B7 -- A_sd_B10 -- C_ld_B10

Task E1: Long distance (Id) driving of vehicle C by VW

Description

- The long-distance driving tests are done by VW with vehicle C using R33 from a public fuel station and B10 for 15.000 km each.
- This result is similar to the oil dilution tests of task D2. In both tasks, the difference in oil-diesel content might be affected by differences in the the fossil fraction of the tested B10 and B7 fuels

-- A_sd_B7 -- C_ld_B7 -- A_sd_B10 -- C_ld_B10

Task E1: Long distance (Id) driving of vehicle C by VW

Description

- The long-distance driving tests are done by VW with vehicle C using R33 from a public fuel station and B10 for 15.000 km each.
- The overall oil dilution results in decreased viscosities during the long-distances tests, too. However, the overall decrease in viscosity is lower than the viscosity decrease in short-distance driving.

-- A_sd_B7 -- C_ld_B7 -- A_sd_B10 -- C_ld_B10

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- $\circ~$ Task X: Thermodynamic raw-emissions

Executive summary and outlook

Acknowledgment

Contact information

Executive summary (1/8) - Overview

This project is focused on the investigation of properties and engine-oil dilution of drop-in capable partially regenerative diesel blends including varying shares of fatty acid methyl esters (FAME or biodiesel) and paraffinic diesel (here: hydrotreated vegetable oil - HVO).

Therefore, the project tested a variety of different fuel blends listed below.

Executive summary (2/8) – Fuel analysis and aging

The results of the chemical fuel investigations show:

- A blend of 10 vol% FAME and 41 vol% HVO (called R51) still provides a density $\rho = 815$ kg/m³ and therefore fulfills the DIN EN 16734. The R51 is therefore the fuel blend with the highest regenerative share in the context of this project.
- All tested fuel blends achieve induction times of more than 40 hours in thermo-oxidative aging, which is significantly longer than required by the standard.
- Furthermore, the aged B10 and R51 are fairly identical regarding the formation of CO absorption bands within the FTIR spectrum, which shows that the HVO share does not have a visible effect influence regarding the storage stability.
- However, the aging experiments also show that a diesel R33 shows a lower deposit formation tendency after 80 hours thermo-oxidative aging compared to a B10 and R51. Therefore, the results can find a different fuel aging behaviour after extended thermo-oxidative aging.

Executive summary (3/8) - Fuel and engine-oil analysis

The investigations of the fuel and engine-oil aging interactions are also done at thermo-oxidative conditions. Here, the fuel-oil samples are applied with a fixed mixing ratio of 20 vol% fuel to 80 vol% engine oil. Moreover, the tests include a variation of the 0W20 engine oil coming from Shell and Castrol.

The results of the fuel and engine-oil aging experiments show:

- All fuel-oil blends show an increase in density and kinematic viscosity over the duration of thermooxidative aging. In contrast, the oils, which are aged without being blended with a fuel are fairly stable regarding density and kinematic viscosity, which indicates an aging interaction within the fuel-oil blends.
- The comparison between the different fuels shows no major differences between the aging behavior. This
 means that the amount of oil aging can be assumed to be similar as long as the amount of oil dilution is
 at a comparable level.
- Moreover, the GPC results show a decrease of smaller molecules and an increase of larger molecules over the duration of aging. However, it needs to be noted that aging apparatus is constantly scavenged with air. As a result, it is possible that volatile components are leaving the sample over time.
- The results of the GCMS allow for a differentiation between the the Shell and Castrol base oil.

Executive summary (4/8) – Chassis dynamometer tests

The investigations of the emission behavior and the oil dilution behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

- Vehicle A is a non-instrumented 2.0I TDI Passat (FWD) provided by the AGQM
- Vehicle B is an instrumented 2.0I TDI Passat (FWD) provided by Volkswagen
- Vehicle C is a non-instrumented 2.0I TDI Passat (AWD) operated by Volkswagen.
- Vehicle A is tested in WLTC emission test cycles with 2 fuels and in short-distance driving with 2 fuels
- Vehicle B is tested in WLTC emission test cycles with 5 fuels and in an artifical oil-dilution test using an adapted ECU while operating the vehicle in WLTC with 2 fuels.
- Vehicle C is tested in a long-distance driving profile with 2 fuels.

Executive summary (5/8) – Emissions

The investigations of the emission behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

The results of the WLTC emission tests show:

- The emission results of vehicle A and vehicle B are very comparable using B10 and R33 with no issues regarding Euro 6 emissions and no issues regarding CH₂O, NH₃ or N₂O. The only noticable difference between vehicle A and B is that vehicle A achieves good PN emission results and vehicle B achieves very good PN emission results.
- The emission results of vehicle B with B10, R33, B0, R51 and B30 show that none of the tested fuels shows issues regarding emissions or operational stability. Vehicle C is tested in a long-distance driving profile with 2 fuels. Therefore, none of the tested fuels is assumed to be critical regarding Euro 6 emissions. Moreover, none of the tested fuels shows significant emission concentrations regarding CH₂O, NH₃ or N₂O. It is therefore assumed that the tested fuels are also capable for upcoming Euro 7 legislations.

Executive summary (6/8) – Engine oil dilution

The investigations of the oil dilution behavior of the test fuels are done with three series production vehicles, which are operated in different testing conditions.

The results of oil dilution tests show similar levels of oil dilution with slightly indifferent tendencies:

- The oil dilution tests with vehicle A are done in a short-distance driving profile by a nursery service. These results show that B7 provides a higher total oil dilution than B10 with vehicle A in a short-distance profile.
- The oil dilution tests with vehicle B are done at the chassis dynamometer with adapted ECU. These results show R33 provides a slightly higher total oil dilution than B10 in these testing conditions.
- The oil dilution tests with vehicle C are done on a long-distance driving profile for 15.000 km each. These results show that B10 provides a slightly higher total oil dilution than B7 in these conditions.
- The differences between these results can be attributed to two points. Firstly, all three tests are very different regarding the achievable maximum oil temperature, which can affect the re-evaporation.
 Secondly, it is possible that the applied test fuels are different regarding the base fuel properties.
- However, none of the tests shows major differences between the test fuels. And this result is important, since similar amounts of oil dilution show similar oil aging effects in the chemical experiments.

Executive summary (7/8) – Thermodynamic engine tests

Finally, the report also includes the results of thermodynamic parameter variations at the heavy-duty engine applied at Coburg University. Here, the tests include EGR variations with fixed MFB50 and single injection operation with R33, R51, HVO and B100.

The results of thermodynamic engine tests show:

- The raw-emission results of R51 are in-between the raw emission results of R33 and HVO. This verification is important to confirm that the R51 fuel blend provides no unusual emission tendencies.
- In detail, all fuels show increasing PN and CO emissions while decreasing the NOx emission via EGR.
- However, increasing EGR also shows beneficial results regarding decreased NH₃ and N₂O emissions as a result of decreased nitrogen reactions following decreased peak flame temperatures.
- Moreover, increased EGR also shows benefits regarding decreased combustion sound levels.

Executive summary (8/8)

The results of this research project show that partially regenerative fuel blends such as the R51 provide major potentials for the defossilization of the existing fleet.

- All tested fuels provide induction times of more than 40 hours.
- \circ All tested fuels show no issues in emission regarding Euro 6, CH₂O, NH₃ or N₂O.
- All tests show that the oil dilution tendencies of B7 and B10 fuel blends are on a similar level.
- And the chemical results show that the oil-fuel aging interactions are on a similar level as long as the oil dilution tendency is on a similar level as well.
- As a result, B10 and R51 are very promising fuel blends that contain an increased proportion of regenerative fuels.

Outlook

Outlook

The following pie-charts show that the utilization of R51 could generate an equivalent 4.812 Mio vehicles, which are operated fully sustainably in Germany.

Potentials of R51 blends

Potentials of R51 blends in Diesel cars

Potentials of R51 blends in Diesel cars

R51 could provide an equivalent of 4.812 Mio sustainable vehicles in Germany

Potentials of R51 blends in Diesel cars

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

o Task A: Chemical analysis of fuels and oils

- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- $\circ~$ Task X: Thermodynamic raw-emissions

Executive summary and outlook

Acknowledgment

Contact information

The authors would kindly like to thank

a) Our cooperation partners for supporting us during the testing phase

b) The DFG for funding the research facilities at Coburg University

DFG Deutsche Forschungsgemeinschaft

Agenda:

Executive summary

Theoretical introduction

Methods and Materials

Experimental results

- o Task A: Chemical analysis of fuels and oils
- Task B: Reception of test vehicles
- Task C: WLTC emission testing
- Task D: WLTC oil dilution tests
- Task E: Real-driving oil dilution testing
- $\circ~$ Task X: Thermodynamic raw-emissions

Executive summary and outlook

Acknowledgment

Contact information

Contact information

Prof. Dr.-Ing. Markus Jakob Director of the fuel research Friedrich-Streib-Straße 2 D-96450 Coburg Tel.: +49(0)9561 317-8084 E-Mail: Markus.Jakob@hs-coburg.de

http://fuels.hs-coburg.de